DYNAMIC PROGRAMMING: AN OVERVIEW

Kenneth L. Judd
Hoover Institution

May 10, 2010

DYNAMIC PROGRAMMING:

DEFINITIONS AND EXAMPLES

Discrete-Time Dynamic Programming

- Objective:

$$
E\left\{\sum_{t=1}^{T} \pi\left(x_{t}, u_{t}, t\right)+W\left(x_{T+1}\right)\right\}
$$

$-X$: set of states
$-\mathcal{D}$: the set of controls
$-\pi(x, u, t)$ payoffs in period t, for $x \in X$ at the beginning of period t, and control $u \in \mathcal{D}$ is applied in period t.

- $D(x, t) \subseteq \mathcal{D}$: controls which are feasible in state x at time t.
$-F(A ; x, u, t)$: probability that $x_{t+1} \in A \subset X$ conditional on time t control and state
- Value function

$$
V(x, t) \equiv \sup _{\mathcal{U}(x, t)} E\left\{\sum_{s=t}^{T} \pi\left(x_{s}, u_{s}, s\right)+W\left(x_{T+1}\right) \mid x_{t}=x\right\}
$$

- Bellman equation

$$
V(x, t)=\sup _{u \in D(x, t)} \pi(x, u, t)+E\left\{V\left(x_{t+1}, t+1\right) \mid x_{t}=x, u_{t}=u\right\}
$$

- Existence: boundedness of π is sufficient
- Notational convenience: drop $u \in D(x, t)$ constraints and encode them in payoff function.

Autonomous, Infinite-Horizon Problem:

- Objective:

$$
\max _{u_{t}} E\left\{\sum_{t=1}^{\infty} \beta^{t} \pi\left(x_{t}, u_{t}\right)\right\}
$$

- X : set of states
- \mathcal{D} : the set of controls
$-D(x) \subseteq \mathcal{D}$: controls which are feasible in state x.
$-\pi(x, u)$ payoff in period t if $x \in X$ at the beginning of period t, and control $u \in \mathcal{D}$ is applied in period t.
$-F(A ; x, u)$: probability that $x^{+} \in A \subset X$ conditional on current control u and current state x.
- Value function definition: if $\mathcal{U}(x)$ is set of all feasible strategies starting at x.

$$
V(x) \equiv \sup _{\mathcal{U}(x)} E\left\{\sum_{t=0}^{\infty} \beta^{t} \pi\left(x_{t}, u_{t}\right) \mid x_{0}=x\right\},
$$

- Bellman equation for $V(x)$

$$
V(x)=\sup _{u} \pi(x, u)+\beta E\left\{V\left(x^{+}\right) \mid x, u\right\} \equiv(T V)(x),
$$

- Optimal policy function, $U(x)$, if it exists, is defined by

$$
U(x) \in \arg \max _{u} \pi(x, u)+\beta E\left\{V\left(x^{+}\right) \mid x, u\right\}
$$

- Standard existence theorem:

Theorem 1 If X is compact, $\beta<1$, and π is bounded above and below, then the map

$$
T V=\sup _{u} \pi(x, u)+\beta E\left\{V\left(x^{+}\right) \mid x, u\right\}
$$

is monotone in V, is a contraction mapping with modulus β in the space of bounded functions, and has a unique fixed point.

Applications

- Economics
- Life-cycle decisions on labor, consumption, education
- Business investment
- Portfolio problems
- Economic policy
- Operations Research
- Scheduling, queueing
- Inventory management
- Climate change
- Business response to climate policies
- Optimal policy response to climate change

Simple Deterministic Growth Example

- Problem:

$$
\begin{gathered}
V\left(k_{0}\right)=\max _{c_{t}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right), \\
k_{t+1}=F\left(k_{t}\right)-c_{t} \\
k_{0} \text { given }
\end{gathered}
$$

- Bellman equation

$$
V(k)=\max _{c} u(c)+\beta V(F(k)-c) .
$$

- First-order condition

$$
0=u^{\prime}(c)-\beta V^{\prime}(F(k)-c)
$$

- Solution is a policy function $C(k)$ and a value function $V(k)$ satisfying

$$
\begin{align*}
V(k) & =u(C(k))+\beta V(F(k)-C(k)) \tag{1}\\
0 & =u^{\prime}(C(k))-\beta V^{\prime}(F(k)-C(k)) \tag{2}
\end{align*}
$$

- Eqn.(2) defines value function for any policy function
- Eqn (1) defines policy function in terms of the value function.

General Stochastic Accumulation

- Multidimensional Problem:

$$
\begin{aligned}
& V(k, \theta)=\max _{c_{t}, \ell_{t}} E\left\{\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, \ell_{t}, \theta_{t}\right)\right\} \\
& k_{t+1}=F\left(k_{t}, \ell_{t}, \theta_{t}\right)-c_{t} \\
& \theta_{t+1}=g\left(\theta_{t}, \varepsilon_{t}\right) \\
& k_{0}=k, \theta_{0}=\theta .
\end{aligned}
$$

- State variables:
$-k$: productive capital stocks, endogenous (could include lags, human capital, etc.)
- θ : productivity and taste states, exogenous
- Intratemporal Choices
- Consumption and leisure here
- Could be allocation of time to education, and other activities
- The dynamic programming formulation is

$$
\begin{equation*}
V(k, \theta)=\max _{c, \ell} u(c, \ell)+\beta E\left\{V\left(F(k, \ell, \theta)-c, \theta^{+}\right) \mid \theta\right\}, \tag{12.1.21}
\end{equation*}
$$

where θ^{+}is next period's θ realization

Dynamic Asset Allocation Problem

- Initial wealth W_{0}; wealth at beginning of time t is a random variable W_{t}; all assets at time $t=T$, W_{T}, liquidated and valued at $u\left(W_{T}\right)$.
- B_{t} is bond investment at end of time t with safe return $(1+r)$
- $S_{i, t}$ is investment in stock i with random return $R_{i, t}$, for $1 \leq i \leq n$
- Budget constraint at time t

$$
W_{t}=B_{t}+\sum_{i=1}^{n} S_{i t}
$$

- Wealth at time $t+1$

$$
W_{t+1}=(1+r) B_{t}+\sum_{i=1}^{n} R_{i t} S_{i t}
$$

- Objective:

$$
\max E\left\{u\left(W_{T}\right)\right\}
$$

DYNAMIC PROGRAMMING:

STANDARD METHODS

Discrete State Space Problems

- Discretize the state
- Approximates continuous states
- Use value function iteration
- Performance;
- Algorithm always works for finite-horizon problems but \qquad slowly
- Algorithm only works for infinite-horizon problems if you are very patient
- Discretize states is impractical for multidimensional problems
- Bellman equation: time t value function is

$$
V_{i}^{t}=\max _{u}\left[\pi\left(x_{i}, u, t\right)+\beta \sum_{j=1}^{n} q_{i j}^{t}(u) V_{j}^{t+1}\right], i=1, \cdots, n
$$

- Bellman equation can be directly implemented.
- Called value function iteration
- It is only choice for finite-horizon problems because each period has a different value function.

Policy Iteration (a.k.a. Howard improvement)

- Value function iteration is a slow process
- The only possible method for finite-horizon problems
- Slow for infinite-horizon problems since error is

$$
\left\|V^{k}-V^{*}\right\| \leq \frac{1}{1-\beta}\left\|V^{k+1}-V^{k}\right\|
$$

- Linear convergence at rate β; convergence very slow if β is close to 1 .
- Policy iteration is faster

DYNAMIC PROGRAMMING:

COMPUTATIONAL ISSUES AND SOLUTIONS

Mathematical Formulation of DP

- Problem: Given current situation x (the state), what actions a do I take today to maximize payoff?
- Portfolio problems: stocks versus bonds
- Life-cycle problems
- Inventory management
- Canonical mathematical problem: find function $V: \mathbb{R}^{k} \times \mathbb{N}^{m} \rightarrow R$ expressing expected discounted payoff and solves the fixed-point problem in a Banach space of functions V

$$
V(x)=\max _{u \in D(x)} \pi(u, x)+\beta \int V(f(x, u, z)) d \mu(z) \equiv(T V)(x)
$$

$-x$: state of system; typically x in a bounded subset of $\mathbb{R}^{k} \times \mathbb{N}^{m}$
$-u \in D(x)$: feasible choices when state is x.
$-z$: random disturbances
$-f$: tomorrow's state given today's state, today's choice, and random shock.
$-\beta<1$: discount factor

- V encodes all information about the solution

General Parametric Approach: Approximating T

- For each $x_{j},(T V)\left(x_{j}\right)$ is defined by

$$
\begin{equation*}
v_{j}=(T \hat{V})\left(x_{j}\right)=\max _{u \in D\left(x_{j}\right)} \pi\left(u, x_{j}\right)+\beta \int \hat{V}\left(x^{+} ; a\right) d F\left(x^{+} \mid x_{j}, u\right) \tag{12.7.5}
\end{equation*}
$$

- In practice, we compute the approximation \hat{T}

$$
v_{j}=(\hat{T} V)\left(x_{j}\right) \doteq(T V)\left(x_{j}\right)
$$

- Integration step: for ω_{j} and x_{j} for some numerical quadrature formula

$$
\left.E\left\{\hat{V}\left(x^{+} ; a\right) \mid x_{j}, u\right)\right\}=\int \hat{V}\left(x^{+} ; a\right) d F\left(x^{+} \mid x_{j}, u\right)
$$

- Maximization step: for $x_{i} \in X$, evaluate

$$
v_{i}=(\hat{T} \hat{V})\left(x_{i}\right)
$$

- Fitting step:
* Data: $\left(v_{i}, x_{i}\right), i=1, \cdots, n$
* Objective: find an $a \in R^{m}$ such that $\hat{V}(x ; a)$ best fits the data
* Methods: determined by $\hat{V}(x ; a)$

General Parametric Approach: Value Function Iteration

$$
\begin{aligned}
\text { guess } a & \longrightarrow \hat{V}(x ; a) \\
& \longrightarrow\left(v_{i}, x_{i}\right), i=1, \cdots, n \\
& \longrightarrow \text { new } a
\end{aligned}
$$

- Convergence
- Useful theory fact: T is a contraction mapping
- Computational challenge: constructing \hat{T} so that it is monotonic and/or a contraction mapping
* Not easy
* Is it necessary?
- Computational Problem I: Approximating $V(x)$
- Choose a finite-dimensional parameterization:

$$
\begin{equation*}
V(x) \doteq \hat{V}(x ; a), a \in R^{m} \tag{3}
\end{equation*}
$$

- Choose a finite number of states:

$$
\begin{equation*}
X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}, \tag{4}
\end{equation*}
$$

- Objective: find coefficients $a \in R^{m}$ such that $\hat{V}(x ; a)$ "approximately" satisfies the Bellman equation for $x \in X$.
- Standard methods
* discrete states, step functions,
* piecewise linear functions
* ordinary polynomials and splines
- Can we find better? YES!
- Computational Problem II: Integration step
- Use some quadrature rule Q to approximate

$$
\int V(f(x, u, z)) d \mu(z) \cong Q(V(f(x, u, z)), \mu(z))
$$

- Standard methods
* product rules
* Monte Carlo
- Can we do better? YES!
- Computational Problem III: Maximization step
- For each x_{i} on some grid, numerically solve

$$
\begin{equation*}
v_{i}=\max _{u \in D(x)} \pi\left(u, x_{i}\right)+\beta Q\left(V\left(f\left(x_{i}, u, z\right)\right), \mu(z)\right) \tag{5}
\end{equation*}
$$

- Standard methods
* bisection, Nelder-Mead
* fmincon
* use a single processor
- Can we do better? YES!
- Computational Problem IV: Fitting step
- Construct data to find an $a \in R^{m}$ such that $\hat{V}(x ; a)$ fits the data
- Standard methods
* Piecewise linear interpolation
* Multilinear interpolation
* Polynomials and splines: often unstable!
- Can we do better? YES!
- How do we find better methods?
- Learn and use methods from approximation, quadrature, optimization, and computer science literatures
- Construct our own methods!

