Numerical Optimization

Todd Munson

Mathematics and Computer Science Division Argonne National Laboratory

September 3-11, 2011

Part I

Nonlinear Systems of Equations

Newton Method for Square Systems of Equations

• Given $F: \Re^n \to \Re^n$, compute x such that

$$F(x) = 0$$

• First-order Taylor series approximation

$$\nabla F(x^k)(x-x^k) + F(x^k) = 0$$

Solve linear system of equations

$$x^{k+1} = x^k - \nabla F(x^k)^{-1} F(x^k)$$

- Direct method compute factorization
- Iterative method use Krylov subspace
- Method has local (fast) convergence under suitable conditions
 - If x^k is near a solution, method converges to a solution x^*
 - The distance to the solution decreases quickly; ideally,

$$||x^{k+1} - x^*|| \le c||x^k - x^*||^2$$

Illustration of Cycling

Illustration of Divergence

Possible Outcomes

- Sequence converges to a solution
- Sequence cycles
 - Can have convergent subsequences (limit points)
 - Such limit points are not solutions
- Sequence diverges

Globalized Newton Method

• Solve linear system of equations

$$\nabla F(x^k)d_k = -F(x^k)$$

• Determine step length

$$t_k \in \arg\min_{t \in (0,1]} \|F(x^k + td_k)\|_2^2$$

Update iterate

$$x^{k+1} = x^k + t_k d_k$$

Globalized Newton Method to Proximal Perturbation

Solve linear system of equations

$$(\nabla F(x^k) + \lambda_k I)d_k = -F(x^k)$$

- Check step and possibly use steepest descent direction
- Determine step length

$$t_k \in \arg\min_{t \in (0,1]} \|F(x^k + td_k)\|_2^2$$

• Update iterate

$$x^{k+1} = x^k + t_k d_k$$

Update perturbation

Generalized Nonlinear Systems of Equations

• Given $F: \mathbb{R}^n \to \mathbb{R}^m$, compute x such that

$$F(x) = 0$$

- System is underdetermined if m < n
 - More variables than constraints
 - Solution typically not unique
 - Need to select one solution

$$\min_{x} \|x\|_2$$
 subject to $F(x) = 0$

- System is overdetermined if m > n
 - More constraints than variables
 - Solution typically does not exist
 - Need to select approximate solution

$$\min_{x} \|F(x)\|_{2}$$

- System is square if m = n
 - Jacobian has full rank then solution is unique
 - If Jacobian is rank deficient then
 - Underdetermined when compatible
 - Overdetermined when incompatible

Part II

Unconstrained Optimization

Model Formulation

- Classify m people into two groups using v variables
 - $c \in \{0,1\}^m$ is the known classification
 - ullet $d\in\Re^{m imes v}$ are the observations
 - $\beta \in \Re^{v+1}$ defines the separator
 - logit distribution function
- Maximum likelihood problem

$$\max_{\beta} \sum_{i=1}^m c_i \log(f(\beta, d_{i, \cdot})) + (1 - c_i) \log(1 - f(\beta, d_{i, \cdot}))$$

where

$$f(\beta, x) = \frac{\exp\left(\beta_0 + \sum_{j=1}^{\nu} \beta_j x_j\right)}{1 + \exp\left(\beta_0 + \sum_{j=1}^{\nu} \beta_j x_j\right)}$$

Solution Techniques

$$\min_{x} f(x)$$

Main ingredients of solution approaches:

- Local method: given x_k (solution guess) compute a step s.
 - Gradient Descent
 - Quasi-Newton Approximation
 - Sequential Quadratic Programming
- Globalization strategy: converge from any starting point.
 - Trust region
 - Line search

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s$$
subject to $||s|| \le \Delta_k$

- Initialize trust-region radius
 - Constant
 - Direction
 - Interpolation

- Initialize trust-region radius
 - Constant
 - Direction
 - Interpolation
- Compute a new iterate
 - Solve trust-region subproblem

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s$$

subject to $||s|| \le \Delta_k$

- 1 Initialize trust-region radius
 - Constant
 - Direction
 - Interpolation
- Compute a new iterate
 - Solve trust-region subproblem

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s$$

subject to $||s|| \le \Delta_k$

- Accept or reject iterate
- Opdate trust-region radius
 - Reduction
 - Interpolation
- Check convergence

Solving the Subproblem

- Moré-Sorensen method
 - Computes global solution to subproblem
- Conjugate gradient method with trust region
 - Objective function decreases monotonically
 - Some choices need to be made
 - Preconditioner
 - Norm of direction and residual
 - Dealing with negative curvature

$$\min_{s} f(x_k) + s^{\mathsf{T}} \nabla f(x_k) + \frac{1}{2} s^{\mathsf{T}} (H(x_k) + \lambda_k I) s$$

- Initialize perturbation to zero
- Solve perturbed quadratic model

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T (H(x_k) + \lambda_k I) s$$

- Initialize perturbation to zero
- Solve perturbed quadratic model

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T (H(x_k) + \lambda_k I) s$$

- Find new iterate
 - Search along Newton direction
 - Search along gradient-based direction

- Initialize perturbation to zero
- Solve perturbed quadratic model

$$\min_{s} f(x_k) + s^{\mathsf{T}} \nabla f(x_k) + \frac{1}{2} s^{\mathsf{T}} (H(x_k) + \lambda_k I) s$$

- Find new iterate
 - Search along Newton direction
 - Search along gradient-based direction
- Update perturbation
 - Decrease perturbation if the following hold
 - Iterative method succeeds
 - Search along Newton direction succeeds
 - Otherwise increase perturbation
- Oheck convergence

Solving the Subproblem

• Conjugate gradient method

Solving the Subproblem

- Conjugate gradient method
- Conjugate gradient method with trust region
 - Initialize radius
 - Constant
 - Direction
 - Interpolation
 - Update radius
 - Reduction
 - Step length
 - Interpolation
 - Some choices need to be made
 - Preconditioner
 - Norm of direction and residual
 - Dealing with negative curvature

Performing the Line Search

- Backtracking Armijo Line search
 - Find t such that

$$f(x_k + ts) \le f(x_k) + \sigma t \nabla f(x_k)^T s$$

- Try $t = 1, \beta, \beta^2, ...$ for $0 < \beta < 1$
- More-Thuente Line search
 - Find t such that

$$f(x_k + ts) \le f(x_k) + \sigma t \nabla f(x_k)^T s$$
$$|\nabla f(x_k + ts)^T s| \le \delta |\nabla f(x_k)^T s|$$

- Construct cubic interpolant
- Compute t to minimize interpolant
- Refine interpolant

Updating the Perturbation

• If increasing and $\Delta^k = 0$

$$\Delta^{k+1} = \mathsf{Proj}_{[\ell_0, u_0]} \left(\alpha_0 \| g(x^k) \| \right)$$

② If increasing and $\Delta^k > 0$

$$\Delta^{k+1} = \mathsf{Proj}_{[\ell_i, u_i]} \left(\mathsf{max} \left(\alpha_i \| g(x^k) \|, \beta_i \Delta^k \right) \right)$$

If decreasing

$$\Delta^{k+1} = \min\left(\alpha_d \|g(x^k)\|, \beta_d \Delta^k\right)$$

Trust-Region Line-Search Method

- Initialize trust-region radius
 - Constant
 - Direction
 - Interpolation
- Compute a new iterate
 - Solve trust-region subproblem

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H(x_k) s$$

subject to $||s|| \le \Delta_k$

- Search along direction
- Opdate trust-region radius
 - Reduction
 - Step length
 - Interpolation
- Check convergence

Iterative Methods

- Conjugate gradient method
 - Stop if negative curvature encountered
 - Stop if residual norm is small

Iterative Methods

- Conjugate gradient method
 - Stop if negative curvature encountered
 - Stop if residual norm is small
- Conjugate gradient method with trust region
 - Nash
 - Follow direction to boundary if first iteration
 - Stop at base of direction otherwise
 - Steihaug-Toint
 - Follow direction to boundary
 - Generalized Lanczos
 - Compute tridiagonal approximation
 - Find global solution to approximate problem on boundary
 - Initialize perturbation with approximate minimum eigenvalue

Preconditioners

- No preconditioner
- Absolute value of Hessian diagonal
- Absolute value of perturbed Hessian diagonal
- Incomplete Cholesky factorization of Hessian
- Block Jacobi with Cholesky factorization of blocks
- Scaled BFGS approximation to Hessian matrix
 - None
 - Scalar
 - Diagonal of Broyden update
 - Rescaled diagonal of Broyden update
 - Absolute value of Hessian diagonal
 - Absolute value of perturbed Hessian diagonal

Norms

- Residual
 - Preconditioned $||r||_{M^{-T}M^{-1}}$
 - Unpreconditioned $||r||_2$
 - Natural $||r||_{M^{-1}}$
- Direction
 - Preconditioned $||s||_M \leq \Delta$
 - Monotonically increasing $\|s_{k+1}\|_M > \|s_k\|_M$.

Norms

- Residual
 - Preconditioned $||r||_{M^{-T}M^{-1}}$
 - Unpreconditioned $||r||_2$
 - Natural $||r||_{M^{-1}}$
- Direction
 - Preconditioned $||s||_M \leq \Delta$
 - Monotonically increasing $||s_{k+1}||_M > ||s_k||_M$.
 - $\bullet \ \ \mathsf{Unpreconditioned} \|s\|_2 \leq \Delta$

Termination

- Typical convergence criteria
 - Absolute residual $\|\nabla f(x_k)\| < \tau_a$
 - Relative residual $\frac{\|\nabla f(\mathbf{x}_k)\|}{\|\nabla f(\mathbf{x}_0)\|} < \tau_r$
 - Unbounded objective $f(x_k) < \kappa$
 - Slow progress $|f(x_k) f(x_{k-1})| < \epsilon$
 - Iteration limit
 - Time limit
- Solver status

Convergence Issues

- Quadratic convergence best outcome
- Linear convergence
 - Far from a solution $\|\nabla f(x_k)\|$ is large
 - Hessian is incorrect disrupts quadratic convergence
 - Hessian is rank deficient $\|\nabla f(x_k)\|$ is small
 - Limits of finite precision arithmetic
 - **1** $\|\nabla f(x_k)\|$ converges quadratically to small number
 - 2 $\|\nabla f(x_k)\|$ hovers around that number with no progress
- Domain violations such as $\frac{1}{x}$ when x = 0
 - Make implicit constraints explicit
- Nonglobal solution
 - Apply a multistart heuristic
 - Use global optimization solver

Some Available Software

- TRON Newton method with trust-region
- LBFGS Limited-memory quasi-Newton method with line search
- TAO Toolkit for Advanced Optimization
 - NLS Newton line-search method
 - NTR Newton trust-region method
 - NTL Newton line-search/trust-region method
 - LMVM Limited-memory quasi-Newton method
 - CG Nonlinear conjugate gradient methods

Model Formulation

- Economy with *n* agents and *m* commodities
 - $e \in \mathbb{R}^{n \times m}$ are the endowments
 - $\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
 - $\lambda \in \Re^n$ are the social weights
- Social planning problem

$$\max_{x \ge 0} \qquad \sum_{i=1}^{n} \lambda_{i} \left(\sum_{k=1}^{m} \frac{\alpha_{i,k} (1 + x_{i,k})^{1 - \beta_{i,k}}}{1 - \beta_{i,k}} \right)$$
subject to
$$\sum_{i=1}^{n} x_{i,k} \le \sum_{i=1}^{n} e_{i,k} \qquad \forall k = 1, \dots, m$$

Solving Constrained Optimization Problems

$$\min_{x} f(x)$$
 subject to $c(x) \ge 0$

Main ingredients of solution approaches:

- Local method: given x_k (solution guess) find a step s.
 - Sequential Quadratic Programming (SQP)
 - Sequential Linear/Quadratic Programming (SLQP)
 - Interior-Point Method (IPM)
- Globalization strategy: converge from any starting point.
 - Trust region
 - Line search
- Acceptance criteria: filter or penalty function.

Sequential Linear Programming

- Initialize trust-region radius
- Compute a new iterate

Sequential Linear Programming

- 1 Initialize trust-region radius
- Compute a new iterate
 - Solve linear program

$$\min_{s} f(x_k) + s^T \nabla f(x_k)$$
subject to $c(x_k) + \nabla c(x_k)^T s \ge 0$

$$||s|| \le \Delta_k$$

Sequential Linear Programming

- Initialize trust-region radius
- Compute a new iterate
 - Solve linear program

$$\min_{s} f(x_k) + s^T \nabla f(x_k)$$
subject to $c(x_k) + \nabla c(x_k)^T s \ge 0$

$$||s|| \le \Delta_k$$

- Accept or reject iterate
- Update trust-region radius
- Oheck convergence

Sequential Quadratic Programming

- Initialize trust-region radius
- Compute a new iterate

Sequential Quadratic Programming

- 1 Initialize trust-region radius
- Compute a new iterate
 - Solve quadratic program

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T W(x_k) s$$
subject to $c(x_k) + \nabla c(x_k)^T s \ge 0$

$$\|s\| \le \Delta_k$$

Sequential Quadratic Programming

- 1 Initialize trust-region radius
- Compute a new iterate
 - Solve quadratic program

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T W(x_k) s$$
subject to $c(x_k) + \nabla c(x_k)^T s \ge 0$

$$||s|| \le \Delta_k$$

- Accept or reject iterate
- Update trust-region radius
- Check convergence

Sequential Linear Quadratic Programming

- Initialize trust-region radius
- Compute a new iterate

Sequential Linear Quadratic Programming

- Initialize trust-region radius
- Compute a new iterate
 - Solve linear program to predict active set

$$\min_{\substack{d \text{ subject to } c(x_k) + d^T \nabla f(x_k) \\ \|d\| \leq \Delta_k}} f(x_k) + d^T \nabla f(x_k) + d \geq 0$$

Sequential Linear Quadratic Programming

- 1 Initialize trust-region radius
- Compute a new iterate
 - Solve linear program to predict active set

$$\min_{\substack{d \text{ subject to } c(x_k) + d^T \nabla f(x_k) \\ \|d\| \leq \Delta_k}} f(x_k) + \nabla f(x_k) + \nabla f(x_k) = 0$$

Solve equality constrained quadratic program

$$\min_{s} f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T W(x_k) s$$
subject to $c_A(x_k) + \nabla c_A(x_k)^T s = 0$

- Accept or reject iterate
- Opdate trust-region radius
- Check convergence

Acceptance Criteria

- Decrease objective function value: $f(x_k + s) \le f(x_k)$
- Decrease constraint violation: $||c_{-}(x_k + s)|| \le ||c_{-}(x_k)||$

Acceptance Criteria

- Decrease objective function value: $f(x_k + s) \le f(x_k)$
- Decrease constraint violation: $||c_{-}(x_k + s)|| \le ||c_{-}(x_k)||$
- Four possibilities

• step can decrease both $f(x)$ and $ c_{-}(x) $	GOOD
② step can decrease $f(x)$ and increase $ c_{-}(x) $???
3 step can increase $f(x)$ and decrease $ c_{-}(x) $???
3 step can increase both $f(x)$ and $ c_{-}(x) $	BAD

Acceptance Criteria

- Decrease objective function value: $f(x_k + s) \le f(x_k)$
- Decrease constraint violation: $||c_{-}(x_k + s)|| \le ||c_{-}(x_k)||$
- Four possibilities

•	
1 step can decrease both $f(x)$ and $ c_{-}(x) $	GOOD
② step can decrease $f(x)$ and increase $ c_{-}(x) $???
3 step can increase $f(x)$ and decrease $ c_{-}(x) $???
• step can increase both $f(x)$ and $ c_{-}(x) $	BAD

• Filter uses concept from multi-objective optimization

$$(h_{k+1},f_{k+1})$$
 dominates (h_ℓ,f_ℓ) iff $h_{k+1} \leq h_\ell$ and $f_{k+1} \leq f_\ell$

Filter Framework

Filter \mathcal{F} : list of non-dominated pairs (h_{ℓ}, f_{ℓ})

- new x_{k+1} is acceptable to filter $\mathcal F$ iff for all $\ell \in \mathcal F$

Filter Framework

Filter \mathcal{F} : list of non-dominated pairs (h_{ℓ}, f_{ℓ})

- new x_{k+1} is acceptable to filter $\mathcal F$ iff for all $\ell \in \mathcal F$
- remove redundant filter entries

Filter Framework

Filter \mathcal{F} : list of non-dominated pairs (h_{ℓ}, f_{ℓ})

- new x_{k+1} is acceptable to filter $\mathcal F$ iff for all $\ell \in \mathcal F$

 - $f_{k+1} \leq f_{\ell}$
- remove redundant filter entries
- new x_{k+1} is rejected if for some $\ell \in \mathcal{F}$
 - $lack lambda_{k+1} > h_\ell$ and
 - ② $f_{k+1} > f_{\ell}$

Convergence Criteria

- Feasible and no descent directions
 - Constraint qualification LICQ, MFCQ
 - Linearized active constraints characterize directions
 - Objective gradient is a linear combination of constraint gradients

Optimality Conditions

• If x^* is a local minimizer and a constraint qualification holds, then there exist multipliers $\lambda^* \geq 0$ such that

$$\nabla f(x^*) - \nabla c_{\mathcal{A}}(x^*)^T \lambda_{\mathcal{A}}^* = 0$$

- Lagrangian function $\mathcal{L}(x,\lambda) := f(x) \lambda^T c(x)$
- Optimality conditions can be written as

$$\nabla f(x) - \nabla c(x)^{\mathsf{T}} \lambda = 0$$

$$0 \le \lambda \perp c(x) \ge 0$$

Complementarity problem

Termination

- Feasible and complementary $\|\min(c(x_k), \lambda_k)\| \le \tau_f$
- Optimal $\|\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}_k,\lambda_k)\| \leq \tau_o$
- Other possible conditions
 - Slow progress
 - Iteration limit
 - Time limit
- Multipliers and reduced costs

Convergence Issues

- Quadratic convergence best outcome
- Globally infeasible linear constraints infeasible
- Locally infeasible nonlinear constraints locally infeasible
- Unbounded objective hard to detect
- Unbounded multipliers constraint qualification not satisfied
- Linear convergence rate
 - Far from a solution $\|\nabla f(x_k)\|$ is large
 - Hessian is incorrect disrupts quadratic convergence
 - Hessian is rank deficient $\|\nabla f(x_k)\|$ is small
 - Limits of finite precision arithmetic
- Domain violations such as $\frac{1}{x}$ when x = 0
 - Make implicit constraints explicit
- Nonglobal solutions
 - Apply a multistart heuristic
 - Use global optimization solver

Some Available Software

- filterSQP
 - trust-region SQP; robust QP solver
 - filter to promote global convergence
- SNOPT
 - line-search SQP; null-space CG option
 - ℓ_1 exact penalty function
- SLIQUE part of KNITRO
 - SLP-EQP
 - trust-region with ℓ_1 penalty
 - use with knitro_options = "algorithm=3";

Part III

Constrained Optimization

Part IV

Optimal Control

Model Formulation

- Maximize discounted utility
 - $u(\cdot)$ is the utility function
 - R is the retirement age
 - T is the terminal age
 - w is the wage
 - ullet eta is the discount factor
 - r is the interest rate
- Optimization problem

$$\max_{s,c} \sum_{t=0}^{T} \beta^{t} u(c_{t})$$
subject to $s_{t+1} = (1+r)s_{t} + w - c_{t} \ t = 0, \dots, R-1$

$$s_{t+1} = (1+r)s_{t} - c_{t} \qquad t = R, \dots, T$$

$$s_{0} = s_{T+1} = 0$$

Solving Constrained Optimization Problems

$$\min_{x} f(x)$$
 subject to $c(x) \ge 0$

Main ingredients of solution approaches:

- Local method: given x_k (solution guess) find a step s.
 - Sequential Quadratic Programming (SQP)
 - Sequential Linear/Quadratic Programming (SLQP)
 - Interior-Point Method (IPM)
- Globalization strategy: converge from any starting point.
 - Trust region
 - Line search
- Acceptance criteria: filter or penalty function.

Interior-Point Method

Reformulate optimization problem with slacks

$$\min_{x} f(x)
\text{subject to } c(x) = 0
x \ge 0$$

Construct perturbed optimality conditions

$$F_{\tau}(x, y, z) = \begin{bmatrix} \nabla f(x) - \nabla c(x)^{T} \lambda - \mu \\ c(x) \\ X \mu - \tau e \end{bmatrix}$$

- Central path $\{x(\tau), \lambda(\tau), \mu(\tau) \mid \tau > 0\}$
- ullet Apply Newton's method for sequence $au \searrow 0$

Interior-Point Method

- Compute a new iterate
 - Solve linear system of equations

$$\begin{bmatrix} W_k & -\nabla c(x_k)^T - I \\ \nabla c(x_k) & 0 & 0 \\ \mu_k & 0 & X_k \end{bmatrix} \begin{pmatrix} s_x \\ s_\lambda \\ s_\mu \end{pmatrix} = -F_\tau(x_k, \lambda_k, \mu_k)$$

- Accept or reject iterate
- Update parameters
- Check convergence

Convergence Issues

- Quadratic convergence best outcome
- Globally infeasible linear constraints infeasible
- Locally infeasible nonlinear constraints locally infeasible
- Dual infeasible dual problem is locally infeasible
- Unbounded objective hard to detect
- Unbounded multipliers constraint qualification not satisfied
- Duality gap
- Domain violations such as $\frac{1}{x}$ when x = 0
 - Make implicit constraints explicit
- Nonglobal solutions
 - Apply a multistart heuristic
 - Use global optimization solver

Some Available Software

- IPOPT open source in COIN-OR
 - line-search filter algorithm
- KNITRO
 - trust-region Newton to solve barrier problem
 - ℓ_1 penalty barrier function
 - Newton system: direct solves or null-space CG
- LOQO
 - line-search method
 - Newton system: modified Cholesky factorization

Optimal Technology

Optimize energy production schedule and transition between old and new reduced-carbon technology to meet carbon targets

- Maximize social welfare
- Constraints
 - Limit total greenhouse gas emissions
 - Low-carbon technology less costly as it becomes widespread
- Assumptions on emission rates, economic growth, and energy costs

Model Formulation

- Finite time: $t \in [0, T]$
- Instantaneous energy output: $q^{o}(t)$ and $q^{n}(t)$
- Cumulative energy output: $x^{o}(t)$ and $x^{n}(t)$

$$x^n(t) = \int_0^t q^n(\tau) d\tau$$

Discounted greenhouse gases emissions

$$\int_0^T e^{-at} \left(b_o q^o(t) + b_n q^n(t) \right) dt \le z_T$$

- Consumer surplus S(Q(t), t) derived from utility
- Production costs
 - co per unit cost of old technology
 - $c_n(x^n(t))$ per unit cost of new technology (learning by doing)

Continuous-Time Model

$$\max_{\{q^o, q^n, x^n, z\}(t)} \int_0^T e^{-rt} \left[S(q^o(t) + q^n(t), t) - c_o q^o(t) - c_n(x^n(t)) q^n(t) \right] dt$$
subject to $\dot{x^n}(t) = q^n(t) \quad x(0) = x_0 = 0$

$$\dot{z}(t) = e^{-at} \left(b_o q^o(t) + b_n q^n(t) \right) \quad z(0) = z_0 = 0$$

$$z(T) \le z_T$$

$$q^o(t) \ge 0, \quad q^n(t) \ge 0.$$

Optimal Technology Penetration

Discretization:

- $t \in [0, T]$ replaced by N + 1 equally spaced points $t_i = ih$
- h := T/N time integration step-length
- approximate $q_i^n \simeq q^n(t_i)$ etc.

Replace differential equation

$$\dot{x}(t) = q^n(t)$$

by

$$x_{i+1} = x_i + hq_i^n$$

Discretization:

- $t \in [0, T]$ replaced by N + 1 equally spaced points $t_i = ih$
- h := T/N time integration step-length
- approximate $q_i^n \simeq q^n(t_i)$ etc.

Replace differential equation

$$\dot{x}(t) = q^n(t)$$

by

$$x_{i+1} = x_i + hq_i^n$$

Output of new technology between t = 24 and t = 35

Solution with Varying h

Output for different discretization schemes and step-sizes

Add adjustment cost to model building of capacity: Capital and Investment:

- $K^{j}(t)$ amount of capital in technology j at t.
- $I^{j}(t)$ investment to increase $K^{j}(t)$.
- initial capital level as \bar{K}_0^j :

Notation:

- $Q(t) = q^o(t) + q^n(t)$
- $C(t) = C^{o}(q^{o}(t), K^{o}(t)) + C^{n}(q^{n}(t), K^{n}(t))$
- $I(t) = I^{o}(t) + I^{n}(t)$
- $K(t) = K^{o}(t) + K^{n}(t)$

$$\max_{\{q^{j},K^{j},l^{j},x,z\}(t)} \left\{ \int_{0}^{T} e^{-rt} \left[\tilde{S}(Q(t),t) - C(t) - K(t) \right] dt + e^{-rT} K(T) \right\}$$
 subject to $\dot{x}(t) = q^{n}(t), \quad x(0) = x_{0} = 0$
$$\dot{K}^{j}(t) = -\delta K^{j}(t) + l^{j}(t), \quad K^{j}(0) = \bar{K}^{j}_{0}, \quad j \in \{o,n\}$$

$$\dot{z}(t) = e^{-at} [b_{o}q^{o}(t) + b_{n}q^{n}(t)], \quad z(0) = z_{0} = 0$$

$$z(T) \leq z_{T}$$

$$q^{j}(t) \geq 0, \ j \in \{o,n\}$$

$$l^{j}(t) \geq 0, \ j \in \{o,n\}$$

Optimal output, investment, and capital for 50% CO2 reduction.

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize
$$\frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt$$

subject to

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0, 1],$$

 $y(0) = 1.$

$$\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2 + e^3)},$$
$$u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2 + e^3)}.$$

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize
$$\frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt$$

subject to

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0, 1],$$

 $y(0) = 1.$

$$\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2 + e^3)},$$
$$u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2 + e^3)}.$$

Discretize with 2nd order RK

minimize
$$\frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt$$
 minimize $\frac{h}{2} \sum_{k=0}^{K-1} u_{k+1/2}^2 + 2y_{k+1/2}^2$

subject to
$$(k = 0, ..., K)$$
:

$$y_{k+1/2} = y_k + \frac{h}{2} (\frac{1}{2} y_k + u_k),$$

$$y_{k+1} = y_k + h(\frac{1}{2} y_{k+1/2} + u_{k+1/2}),$$

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize
$$\frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt$$

subject to

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0, 1],$$

$$v(0) = 1.$$

$$\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2 + e^3)},$$

$$u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2 + e^3)}.$$

Discretize with 2nd order RK

minimize
$$\frac{1}{2} \int_0^1 u^2(t) + 2y^2(t) dt$$
 minimize $\frac{h}{2} \sum_{k=0}^{K-1} u_{k+1/2}^2 + 2y_{k+1/2}^2$

subject to (k = 0, ..., K):

$$y_{k+1/2} = y_k + \frac{h}{2} (\frac{1}{2} y_k + u_k),$$

$$y_{k+1} = y_k + h (\frac{1}{2} y_{k+1/2} + u_{k+1/2}),$$

Discrete solution (k $0, \ldots, K$):

$$y_k = 1, \quad y_{k+1/2} = 0,$$

 $u_k = -\frac{4+h}{2h}, \quad u_{k+1/2} = 0,$

DOES NOT CONVERGE!

Tips to Solve Continuous-Time Problems

- Use discretize-then-optimize with different schemes
- Refine discretization: h = 1 discretization is nonsense
- Check implied discretization of adjoints

Tips to Solve Continuous-Time Problems

- Use discretize-then-optimize with different schemes
- Refine discretization: h = 1 discretization is nonsense
- Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize

- Consistent adjoint/dual discretization
- Discretized gradients can be wrong!
- Harder for inequality constraints

Part V

Complementarity Constraints

Nash Games

- Non-cooperative game played by n individuals
 - Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible

Nash Games

- Non-cooperative game played by n individuals
 - Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium (x^*, y^*)

$$x^* \in \left\{ egin{array}{l} rg \min_{x \geq 0} & f_1(x,y^*) \
subsection subject ext{ to } c_1(x) \leq 0 \
subsection \left\{ egin{array}{l} rg \min_{y \geq 0} & f_2(x^*,y) \
subsection subject ext{ to } c_2(y) \leq 0 \end{array}
ight.$$

Nash Games

- Non-cooperative game played by *n* individuals
 - Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium (x^*, y^*)

$$x^* \in \left\{ egin{array}{l} rg \min_{x \geq 0} & f_1(x,y^*) \
subsection subject to \ c_1(x) \leq 0 \
subsection \left\{ egin{array}{l} rg \min_{y \geq 0} & f_2(x^*,y) \
subsection subject to \ c_2(y) \leq 0 \ \end{array}
ight.$$

- Many applications in economics
 - Bimatrix games
 - Cournot duopoly models
 - General equilibrium models
 - Arrow-Debreau models

Complementarity Formulation

- Assume each optimization problem is convex
 - $f_1(\cdot, y)$ is convex for each y
 - $f_2(x,\cdot)$ is convex for each x
 - $c_1(\cdot)$ and $c_2(\cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$$\min_{\substack{x \geq 0 \\ \text{subject to } c_1(x) \leq 0}} f_1(x, y^*) \Leftrightarrow 0 \leq x \perp \nabla_x f_1(x, y^*) + \lambda_1^T \nabla_x c_1(x) \geq 0$$

Complementarity Formulation

- Assume each optimization problem is convex
 - $f_1(\cdot, y)$ is convex for each y
 - $f_2(x,\cdot)$ is convex for each x
 - $c_1(\cdot)$ and $c_2(\cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$$\min_{\substack{y \geq 0 \\ \text{subject to } c_2(y) \leq 0}} f_2(x^*, y) \Leftrightarrow 0 \leq y \perp \nabla_y f_2(x^*, y) + \lambda_2^T \nabla_y c_2(y) \geq 0$$

Complementarity Formulation

- Assume each optimization problem is convex
 - $f_1(\cdot, y)$ is convex for each y
 - $f_2(x,\cdot)$ is convex for each x
 - $c_1(\cdot)$ and $c_2(\cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$$0 \le x \quad \pm \nabla_{x} f_{1}(x, y) + \lambda_{1}^{T} \nabla_{x} c_{1}(x) \ge 0
0 \le y \quad \pm \nabla_{y} f_{2}(x, y) + \lambda_{2}^{T} \nabla_{y} c_{2}(y) \ge 0
0 \le \lambda_{1} \pm -c_{1}(y) \ge 0
0 \le \lambda_{2} \pm -c_{2}(y) \ge 0$$

- Nonlinear complementarity problem
 - Square system number of variables and constraints the same
 - Each solution is an equilibrium for the Nash game

Model Formulation

- Economy with n agents and m commodities
 - $e \in \mathbb{R}^{n \times m}$ are the endowments
 - $\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
 - $p \in \Re^m$ are the commodity prices
- Agent i maximizes utility with budget constraint

$$\max_{\substack{x_{i,*} \geq 0}} \sum_{k=1}^{m} \frac{\alpha_{i,k} (1 + x_{i,k})^{1 - \beta_{i,k}}}{1 - \beta_{i,k}}$$
 subject to
$$\sum_{k=1}^{m} p_k \left(x_{i,k} - e_{i,k} \right) \leq 0$$

Market k sets price for the commodity

$$0 \leq p_k \perp \sum_{i=1}^n (e_{i,k} - x_{i,k}) \geq 0$$

Methods for Complementarity Problems

- Sequential linearization methods (PATH)
 - Solve the linear complementarity problem

$$0 \le x \perp F(x_k) + \nabla F(x_k)(x - x_k) \ge 0$$

- Perform a line search along merit function
- Repeat until convergence

Methods for Complementarity Problems

- Sequential linearization methods (PATH)
 - Solve the linear complementarity problem

$$0 \le x \perp F(x_k) + \nabla F(x_k)(x - x_k) \ge 0$$

- Perform a line search along merit function
- Repeat until convergence
- Semismooth reformulation methods (SEMI)
 - Solve linear system of equations to obtain direction
 - Globalize with a trust region or line search
 - Less robust in general
- Interior-point methods

Semismooth Reformulation

Define Fischer-Burmeister function

$$\phi(a, b) := a + b - \sqrt{a^2 + b^2}$$

- $\phi(a, b) = 0$ iff $a \ge 0$, $b \ge 0$, and ab = 0
- Define the system

$$[\Phi(x)]_i = \phi(x_i, F_i(x))$$

- x^* solves complementarity problem iff $\Phi(x^*) = 0$
- Nonsmooth system of equations

Semismooth Algorithm

• Calculate $H^k \in \partial_B \Phi(x^k)$ and solve the following system for d^k :

$$H^k d^k = -\Phi(x^k)$$

If this system either has no solution, or

$$\nabla \Psi(x^k)^T d^k \leq -p_1 \|d^k\|^{p_2}$$

is not satisfied, let $d^k = -\nabla \Psi(x^k)$.

Semismooth Algorithm

• Calculate $H^k \in \partial_B \Phi(x^k)$ and solve the following system for d^k :

$$H^k d^k = -\Phi(x^k)$$

If this system either has no solution, or

$$\nabla \Psi(x^k)^T d^k \leq -p_1 \|d^k\|^{p_2}$$

is not satisfied, let $d^k = -\nabla \Psi(x^k)$.

② Compute smallest nonnegative integer i^k such that

$$\Psi(x^k + \beta^{i^k} d^k) \le \Psi(x^k) + \sigma \beta^{i^k} \nabla \Psi(x^k) d^k$$

3 Set $x^{k+1} = x^k + \beta^{i^k} d^k$, k = k + 1, and go to 1.

Convergence Issues

- Quadratic convergence best outcome
- Linear convergence
 - Far from a solution $-r(x_k)$ is large
 - Jacobian is incorrect disrupts quadratic convergence
 - Jacobian is rank deficient $\|\nabla r(x_k)\|$ is small
 - Converge to local minimizer guarantees rank deficiency
 - Limits of finite precision arithmetic
 - $\mathbf{0}$ $r(x_k)$ converges quadratically to small number
 - (2) $r(x_k)$ hovers around that number with no progress
- Domain violations such as $\frac{1}{x}$ when x = 0

Some Available Software

- PATH sequential linearization method
- MILES sequential linearization method
- SEMI semismooth linesearch method
- TAO Toolkit for Advanced Optimization
 - SSLS full-space semismooth linesearch methods
 - ASLS active-set semismooth linesearch methods
 - RSCS reduced-space method

Definition

- Leader-follower game
 - Dominant player (leader) selects a strategy y^*
 - Then followers respond by playing a Nash game

$$x_i^* \in \begin{cases} \arg\min_{x_i \ge 0} & f_i(x, y) \\ \text{subject to } c_i(x_i) \le 0 \end{cases}$$

Leader solves optimization problem with equilibrium constraints

$$\begin{aligned} \min_{y \geq 0, x, \lambda} & g(x, y) \\ \text{subject to } h(y) \leq 0 \\ & 0 \leq x_i \quad \bot \quad \nabla_{x_i} f_i(x, y) + \lambda_i^T \nabla_{x_i} c_i(x_i) \geq 0 \\ & 0 \leq \lambda_i \quad \bot \quad -c_i(x_i) \geq 0 \end{aligned}$$

- Many applications in economics
 - Optimal taxation
 - Tolling problems

Model Formulation

- Economy with n agents and m commodities
 - $e \in \Re^{n \times m}$ are the endowments
 - $\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
 - $p \in \Re^m$ are the commodity prices
- Agent i maximizes utility with budget constraint

$$\max_{\substack{x_{i,*} \geq 0}} \sum_{k=1}^{m} \frac{\alpha_{i,k} (1+x_{i,k})^{1-\beta_{i,k}}}{1-\beta_{i,k}}$$
 subject to
$$\sum_{k=1}^{m} p_k \left(x_{i,k} - e_{i,k}\right) \leq 0$$

Market k sets price for the commodity

$$0 \le p_k \perp \sum_{i=1}^n (e_{i,k} - x_{i,k}) \ge 0$$

Nonlinear Programming Formulation

$$\begin{aligned} \min_{x,y,\lambda,s,t\geq 0} & g(x,y) \\ \text{subject to } & h(y) \leq 0 \\ & s_i = \nabla_{x_i} f_i(x,y) + \lambda_i^T \nabla_{x_i} c_i(x_i) \\ & t_i = -c_i(x_i) \\ & \sum_i \left(s_i^T x_i + \lambda_i t_i \right) \leq 0 \end{aligned}$$

- Constraint qualification fails
 - Lagrange multiplier set unbounded
 - Constraint gradients linearly dependent
 - Central path does not exist
- Able to prove convergence results for some methods
- Reformulation very successful and versatile in practice

Penalization Approach

$$\begin{aligned} \min_{x,y,\lambda,s,t \geq 0} \ g(x,y) + \pi \sum_{i} \left(s_{i}^{T} x_{i} + \lambda_{i} t_{i} \right) \\ \text{subject to } h(y) \leq 0 \\ s_{i} = \nabla_{x_{i}} f_{i}(x,y) + \lambda_{i}^{T} \nabla_{x_{i}} c_{i}(x_{i}) \\ t_{i} = -c_{i}(x_{i}) \end{aligned}$$

- Optimization problem satisfies constraint qualification
- Need to increase π

Relaxation Approach

$$\begin{aligned} \min_{\substack{x,y,\lambda,s,t\geq 0\\ \text{subject to } h(y) \leq 0\\ s_i = \nabla_{x_i} f_i(x,y) + \lambda_i^T \nabla_{x_i} c_i(x_i)\\ t_i = -c_i(x_i)\\ \sum_i \left(s_i^T x_i + \lambda_i t_i\right) \leq \tau \end{aligned}$$

ullet Need to decrease au

Limitations

- Multipliers may not exist
- Solvers can have a hard time computing solutions
 - Try different algorithms
 - Compute feasible starting point
- Stationary points may have descent directions
 - Checking for descent is an exponential problem
 - Strong stationary points found in certain cases
- Many stationary points global optimization

Limitations

- Multipliers may not exist
- Solvers can have a hard time computing solutions
 - Try different algorithms
 - Compute feasible starting point
- Stationary points may have descent directions
 - Checking for descent is an exponential problem
 - Strong stationary points found in certain cases
- Many stationary points global optimization
- Formulation of follower problem
 - Multiple solutions to Nash game
 - Nonconvex objective or constraints
 - Existence of multipliers

Part VI

Mixed Integer and Global Optimization

Global Optimization

I need to find the GLOBAL minimum!

- use any NLP solver (often work well!)
- use the multi-start trick from previous slides
- global optimization based on branch-and-reduce: BARON
 - constructs global underestimators
 - refines region by branching
 - tightens bounds by solving LPs
 - solve problems with 100s of variables
- "voodoo" solvers: genetic algorithm & simulated annealing no convergence theory ... usually worse than deterministic

Derivative-Free Optimization

My model does not have derivatives!

- Change your model ... good models have derivatives!
- pattern-search methods for min f(x)
 - evaluate f(x) at stencil $x_k + \Delta M$
 - move to new best point
 - extend to NLP; some convergence theory h
 - matlab: NOMADm.m; parallel APPSPACK
- solvers based on building interpolating quadratic models
 - DFO project on www.coin-or.org
 - Mike Powell's NEWUOA quadratic model
- "voodoo" solvers: genetic algorithm & simulated annealing no convergence theory ... usually worse than deterministic

Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)

- modeling discrete choices $\Rightarrow 0-1$ variables
- modeling integer decisions ⇒ integer variables
 e.g. number of different stocks in portfolio (8-10)
 not number of beers sold at Goose Island (millions)

MINLP solvers:

- branch (separate $z_i = 0$ and $z_i = 1$) and cut
- solve millions of NLP relaxations: MINLPBB, SBB
- outer approximation: iterate MILP and NLP solvers BONMIN (COIN-OR) & FilMINT on NEOS

Portfolio Management

- N: Universe of asset to purchase
- x_i: Amount of asset i to hold
- B: Budget

minimize
$$u(x)$$
 subject to $\sum_{i \in N} x_i = B$, $x \ge 0$

Portfolio Management

- N: Universe of asset to purchase
- x_i: Amount of asset i to hold
- B: Budget

minimize
$$u(x)$$
 subject to $\sum_{i \in N} x_i = B$, $x \ge 0$

- Markowitz: $u(x) \stackrel{\text{def}}{=} -\alpha^T x + \lambda x^T Q x$
 - \bullet α : maximize expected returns
 - Q: variance-covariance matrix of expected returns
 - ullet λ : minimize risk; aversion parameter

More Realistic Models

- $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings
- Benchmark Tracking: $u(x) \stackrel{\text{def}}{=} (x-b)^T Q(x-b)$
 - Constraint on $\mathbb{E}[\text{Return}]: \alpha^T x \geq r$

More Realistic Models

- $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings
- Benchmark Tracking: $u(x) \stackrel{\text{def}}{=} (x-b)^T Q(x-b)$
 - Constraint on $\mathbb{E}[Return]$: $\alpha^T x \ge r$
- Limit Names: $|i \in N : x_i > 0| \le K$
 - Use binary indicator variables to model the implication $x_i > 0 \Rightarrow y_i = 1$
 - Implication modeled with variable upper bounds:

$$x_i \leq By_i \quad \forall i \in N$$

• $\sum_{i \in N} y_i \leq K$

Optimization Conclusions

Optimization is General Modeling Paradigm

- linear, nonlinear, equations, inequalities
- integer variables, equilibrium, control

AMPL (GAMS) Modeling and Programming Languages

- express optimization problems
- use automatic differentiation
- easy access to state-of-the-art solvers

Optimization Software

- open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)
- current solver limitations on laptop:
 - 1,000,000 variables/constraints for LPs
 - 100,000 variables/constraints for NLPs/NCPs
 - 100 variables/constraints for global optimization
 - 500,000,000 variable LP on BlueGene/P