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Introduction

� First we study models for which established theory gives
foundations to numerical methods.

� Study errors in the policy function, in simulations from such
policy, and implications for estimation.

� Roughly speaking, models where equilibrium is Markovian and
continuous have the desired properties.

� Monotonicity or contraction properties allow sharper results
(error bounds).

� Models with heterogeneous agents and frictions may be
problematic (the topic of our next lecture).
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Numerical Dynamic Programming

Based on Santos, Manuel S., 1999. “Numerical Solution of
Dynamic Economic Models,” In: John B. Taylor and Michael
Woodford, Editor(s), Handbook of Macroeconomics, Elsevier,
Volume 1, Part 1, Pages 311-386
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Numerical Dynamic Programming

� Basic idea is restrict the set of functions to a
finite-dimensional domain, which can be captured by a finite
number of instructions.

� These functions will be defined over a compact domain S via
piecewise affine interpolation. Different interpolation schemes
can be used.
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Numerical Dynamic Programming

� We define a grid as finite collection of simplices (in R
l is the

convex combination of l +1 points, in R an interval) {S j}
such that ∪S

j = S , and int(S i )∩ int(S j) = Ø for all i �= j .

� A generic vertex is (k j) and the grid size is h = maxjdiam(S j).

� The space of functions we will employ, is

W h = {V h : S → R | V
h is bdd, continuous, and

DV
h is constant in int(S j)}.
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Algorithm

� For a given grid {S j} with mesh size h the following is the
value function iteration algorithm

1. Initial step: select an accuracy level TOLW and an initial

guess W h
0 ∈ W h.

2. Operator T hW h
n can be defined at vertex point k j by

W
h
n+1(k

j) = max
k �

v(k j ,k �)+βWn(k
�)

s.t. (k j ,k �) feasible, and k j ,k � ∈ S .

3. End of iteration: If ||Wn+1−Wn||≤ TOLW stop; else,

increment n by 1 and return to step 2
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Assumptions and implications

� The state space is compact, and the feasible set for (k ,k �) is
convex.

� The “indirect utility” v is continuous, and C
2 with bounded

derivatives. Moreover, it satisfies a strong form of concavity:
There exists a constant η > 0 such that v(k ,k �)+ 1

2η ||k �||2 is
concave on k ,k �

� Optimal paths are interior
� Theorem 3.1 and Corollary 3.2: These assumptions imply the

true value function is C
2, and the policy function C

1.
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Properties of the Numerical Algorithm

� Lemma 4.1. Under our assumptions, the numerical algorithm
has a unique limit W

h ∈ W h. Further, this limit can be
approached to arbitrary precision in a finite number of
iterations (that is, for any ε > 0 there is N < ∞ :
supk |W h

ñ −W
h|< ε for all ñ > N).

� Lemma 4.2. Let W be the true value function (i.e., the limit
of the value function iteration operator without discretizing),
and γ a bound on its curvature. Then, ||TW −T

h
W ||≤ γ

2h
2.

� Theorem 4.3. Let W be the true value function and W
h be

the limit of the numerical algorithm above. Then, under our
assumptions

||W −W
h||≤ M

1−β
h

2

Where M is a constant that depends on model primitives.
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Intuition behind these results

Key for Theorem 4.3: If T ,T h denote the value function iteration,
and its discretized counterpart above, then
||W −W

h||= ||TW −T
h
W

h||≤ ||TW −T
h
W ||+ ||T h

W −T
h
W

h||

≤ ||TW −T
h
W ||+β ||W −W

h||

Hence ||W −W
h||≤ ||TW−ThW ||

1−β ≤ γh2

2(1−β) , due to Lemma 4.2.
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Modifications to speed up the algorithm

� Value function iteration is reliable, but it is very slow. A lot of
iterations are needed, in general, to achieve ||W h

n+1−W
h
n || low

enough.
� The number of iterations required is a function of how far the

initial condition W
h
0 is from the actual fixed point of the

operator. Since the true solution is “close” to the fixed point of
the operator for any small h, the closer the initial guess is to
the true solution, the closer we will converge.
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Modifications to speed up the algorithm

� Multigrid methods
� The idea is simple: solve the model under a relatively coarse

grid with mesh size h0, which results in a fixed point W
h0 .

This function can then be used as initial condition for the
value function iteration with a finer mesh size h1 < h0.
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Multigrid
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Accuracy of Numerical Solutions
Using the Euler Equations

Based on Santos, Manuel S., 2000. “Accuracy of Numerical
Solutions Using the Euler Equation Residuals,” Econometrica, Vol.
68, No. 6, pp. 1377-1402.
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Euler equations

� The Euler equation of the one sector growth model is

1
Ak

α
t +(1−δ )kt −kt+1

= β
αAk

α−1
t+1 +1−δ

Ak
α
t+1+(1−δ )kt+1−kt+2

� Further, because of the principle of optimality we know there
is a unique g(k) such that the sequence {kt}, recursively
generated by kt+1 = g(kt), given k0, solves the planner
problem.
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Euler equation residuals

� Suppose we have an arbitrary g̃(k) that satisfies, at all k ,

1
Akα +(1−δ )k − g̃(k)

≈ β αA(g̃(k))α−1+1−δ
A(g̃(k))α +(1−δ )g̃(k)− g̃(g̃(k))

� Can we say that g̃(k) is a good approximation to the true
solution of the model?
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Intuition from static problems

LEMMA 2.1 (Santos ECTA 2000): Assume that F : R l → R is a C2

mapping. Let DF (x) be the derivative of function F at point x. Assume that F
is concave in the following strong sense: There is a constant η > 0 such that for

all x in R l
the function F (x)+(η/2)||x ||2 is concave. Let x∗ = argmaxF (x).

Then ||DF (x)||≤ ε implies ||x −x∗||≤ (1/η)ε and ||F (x)−F (x∗)||≤ (1/η)ε2.

Proof: for F : R → R. A first order Taylor approximation of F �
around x∗ yields

F �(x) = F �(x∗)+F ��(s)(x −x∗)

But the first derivative vanishes at the maximizer x∗, and η is a lower bound

for the curvature of F . Hence ε ≥ |F �(x)|≥ η |x −x∗| together imply

|x −x∗|≤ ε/η . Finally, by the concavity of F , F (x)−F (x∗)≤ F �(x)(x −x∗),
but |F �(x)|≤ ε and |x −x∗|≤ ε/η and thus |F (x)−F (x∗)|≤ (1/η)ε2.
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Dynamic version

� Assumption 1: Endogenous predetermined variables lie in a
compact set; the feasible set is convex

� Assumption 2: Value function is C
2 and strongly concave

� Assumption 3: Equilibrium paths lie in the interior of the
feasible set for every initial condition
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Dynamic version

� To simplify the presentation I focus here on the deterministic
version of the model with one state variable, but the results
generalize to stochastic models and several states

� The necessary conditions for a path {kt} to be optimal can be
written as

v1(kt ,kt+1)+βv2(kt+1,kt+2) = 0,

where v is the “indirect” utility (once we wrote everything in
terms of the endogenous states), and vi denotes the partial
derivative of this function with respect to its i − th argument

� Define

ε = max
k

|v1(k , ĝ(k))+βv2(ĝ(k), ĝ(ĝ(k)))|
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Dynamic version

� Suppose |g − ĝ |≤ δ , then if the difference between orbits can
be bounded, then the discounted lifetime utility under g , W ,
and under ĝ , Wĝ satisfy |W −Wĝ |≤ Hεδ/(1−β )

� Suppose |W −Wĝ |≤ γ, then |g − ĝ |≤ (2γ/η)1/2
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Intuition for the proofs

W (k)−Wĝ (k) = ∑β t(v(kt ,kt+1)− v(�kt , k̂t+1))≤
∑β t(v1(�kt , k̂t+1)(kt − k̂t)+ v2(�kt , k̂t+1)(kt+1− k̂t+1) =

v2(�k0, k̂1)(k1− k̂1)+βv1(�k1, k̂2)(k1− k̂1)+ ....=

∑β t(v2(�kt , k̂t+1)+βv1(�kt+1, k̂t+2))(kt − k̂t)≤
δ ∑β t(kt − k̂t).
If the distance between approximate and actual solution, |kt − k̂t |,
is bounded for all t then we are done.
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Intuition for the proofs

Let f (k ,k �) = v(k ,k �)+βW (k �), and k
∗ = g(k), k̂ = ĝ(k).

The assumption |W −Wĝ |≤ γ , implies f (k ,k∗)− f (k , k̂)≤ γ Take
a second order expansion of f on k̂ at point (k ,k∗) :

f (k ,k∗) = f (k , k̂)+ f2(k ,k
∗)(k −k

∗)+
1
2
f22(k ,s)(s −k

∗)2.

Of course, f2(k ,k∗) = 0 and given curvature bounds

γ ≥ f (k ,k∗)− f (k , k̂)≥ η
2
|k∗ − k̂ |
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Main results v1

� Assumption 4: For all δ > 0 there is H > 0 such that if
||g − ĝ ||≤ δ then ||kt − k̂t ||≤ Hδ for all t > 1.

� Theorem 3.3: Let ε be the maximum Euler equation residual
of function ĝ . Then, under Assumptions 1-4 we have

||W −Wĝ ||≤
2H

2ε2

η(1−β )2
||g − ĝ ||≤ 2Hε

η(1−β )
.
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Main results v2

� Let L = maxk |v11(k ,g(k))|
� Theorem 3.5: Let ε be the maximum Euler equation residual

of function ĝ . Then, under Assumptions 1-3 we have

||W −Wĝ ||≤
2

η(1/
�

β −1)2(1−
�

β )2
L
η

ε2

||g − ĝ ||≤ 2

η(1/
�

β −1)(1−
�

β )

�
L
η

�1/2
ε.
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Conclusions

� Euler equations can be easily computed for any arbitrary policy
function.

� Under standard regularity conditions, the accuracy of
approximation of a policy function is proportional to the
magnitude of its Euler equation.

� The constant of proportion depends on primitives like the
discount factor, the curvature of the utility function, and the
curvature of the value function.
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Accuracy of Simulations for
Stochastic Dynamic Models

Based on Peralta-Alva, Adrian and M. S. Santos, 2005. “Accuracy
of Simulations for Stochastic Dynamic Models,” Econometrica, 73,
1939-1976
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Overview

� Stochastic dynamic models may have a recursive structure.
Hence, the state (endogenous) evolves according to

kt+1 = g(kt ,zt)

where g is a time invariant policy function, and zt is an
exogenously given stochastic process.

� Computers may be used to simulate sequences of shocks {zt},
and thus equilibrium time series for each state history
z

t = z0,z1, ...,zt , {k(z t),GDP(z t),c(z t), inv(z t)}t≥0.

� What are the statistical properties one can derive from a
model? why? how do we compute them?
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The problem

� More important, since stochastic dynamic models can only be
numerically approximated, the best we can hope for is to
obtain an approximate policy function g̃ and be able to
generate approximate time series

k̃t+1 = g̃(k̃t ,zt)

� Surprisingly, very little work has been devoted to study
conditions under which approximation errors in g̃ do not
cumulate through time and result in biased simulated statistics.
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Framework of analysis

Dynamical system:

zn+1 =Ψ(zn,εn+1)

kn+1 = g(zn,kn,εn+1), n = 0,1,2, · · · . (2.1)

where z is a finite vector of exogenous shocks in Z in Euclidean space ⊂ Rm. It

evolves according to a function Ψ and an iid shock ε in a set of “events" E .

The distribution of the shock ε is given by a probability measure Q defined on

a measurable space (E ,E). k lists endogenous state variables in K ⊂ R l
.

s = (z ,k) is a generic vector in S = Z ×K .

For expository purposes, we summarize (2.1) as:

sn+1 = ϕ(sn,εn+1), n = 0,1,2, · · · . (2.2)
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Stationary distributions

Stochastic systems can generate very complex dynamics. It is useful to define

the transition probability function

P(s,A) = Q({ε|ϕ(s,ε) ∈ A}). (2.4)

For any given initial condition µ0 on S, the evolution of future probabilities,

{µn}, can be specified by the following operator T ∗
that takes the space of

probabilities on S into itself

µn+1(A) = (T ∗µn)(A) =
�

P(s,A)µn(ds), (2.5)

for all A in S and n ≥ 0. An invariant probability measure or invariant

distribution µ∗
is a fixed point of operator T ∗

, i.e., µ∗ = T ∗µ∗
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An approximated numerical system

Every numerical approximation �ϕ satisfying Assumptions 1-2 will
give rise to a transition probability �P on (S ,S). But even if �ϕ is an
arbitrarily good approximation of function ϕ , the asymptotic
dynamics under transition functions P and �P may be quite different.
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Biased simulations
Transition function P is defined by the following Markov matrix

Π=




1 0 0

0 1/2 1/2
0 1/2 1/2



 .

An element πij corresponds to the value P(si ,{sj}), for i , j = 1,2,3. Note that

Πn = Π for all n ≥ 1. Hence, p = (1,0,0), and p = (0,1/2,1/2) are invariant

distributions of Π, and {s1} and {s2,s3} are the ergodic sets.

Now consider an approximation

�Π=




1−2δ δ δ

0 1/2 1/2
0 1/2 1/2



 for 0 < δ < 1/2.

Then, as n → ∞ {�Πn} converges to




0 1/2 1/2
0 1/2 1/2
0 1/2 1/2



 .

Hence, p = (0,1/2,1/2) is the only possible long-run distribution for the

system. Moreover, {s1} is a transient state, and {s2,s3} is the only ergodic set.



Error Analysis in Dynamic Models I.
Main results

Basic Assumptions

� The set S is compact.
� Function ϕ : S ×E → S is bounded and jointly measurable.

Moreover, for every continuous function f : S → R ,

�
f (ϕ(sj ,ε))Q(dε)→j

�
f (ϕ(s,ε))Q(dε) as sj →j s. (2.3)
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An invariant distribution always exists

Theorem
Under Assumptions 1-2, there exists a probability measure µ∗

such

that µ∗ = T
∗µ∗

.
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To study approximation of moments allow for multiplicity

Let
E

max(f ) = max
{µ∗|µ∗=T ∗µ∗}

�
f (s)µ∗(ds) (3.3a)

E
min(f ) = min

{µ∗|µ∗=T ∗µ∗}

�
f (s)µ∗(ds). (3.3b)

Remark: The set of invariant distributions {µ∗|µ∗ = T
∗µ∗} is

weakly compact and convex, we get
[Emin(f ),Emax(f )] = {

�
f (s)µ∗(ds)|µ∗ = T

∗µ∗}.
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Notation

Let �·� be the max norm in R
l . Then, for any two vector-valued

functions ϕ and �ϕ let

d(ϕ, �ϕ) = max
s∈S

[
�

�ϕ(s,ε)− �ϕ(s,ε)�Q(dε)]. (3.1)

Using this norm, consider a sequence of functions {ϕj} converging
to ϕ. Note that by Assumptions 1-2 each ϕj defines the associated
pair (Pj ,T ∗

j ); and that an invariant distribution exists.
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Accuracy in moments

Theorem
Let f belong to C (S). Then, for every η > 0 there exists J such

that

E
min(f )−η <

�
f (s)µ∗

j (ds)< E
max(f )+η (3.4)

for all µ∗
j with j ≥ J.
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Problem

The previous results are very interesting, but how do we compute
invariant distributions and their moments?
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Accuracy of simulated moments

We can draw sequences {�εn}. A probability measure λ is defined
over all sequences ω = (ε1,ε2, ...). Once a numerical approximation
ϕj is available, we can generate sample paths {sjn(s0,ω)} defined
recursively as sjn+1(s0,ω) = ϕj(sjn(s0,ω),εn+1) for every n ≥ 0 for
fixed s0 and ω . Then we get sequences of simulated statistics
{ 1

N ∑N
n=1 f (sjn(s0,ω))}, for some function f . Aim: for a sufficiently

good numerical approximation ϕj and for a sufficiently large N the
series { 1

N ∑N
n=1 f (sjn(s0,ω))} is close (almost surely) to the

expected value E (f ) =
�

f (s)µ∗(ds) of some invariant distribution
µ∗ of the original equilibrium function ϕ .
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Accuracy of simulated moments

Theorem
Under our prevailing assumptions, for every η > 0 there are

functions Nj(w) and an integer J such that for all j ≥ J and

N ≥ Nj(ω),

E
min(f )−η <

1
N

N

∑
n=1

f (sjn(s0,ω))< E
max(f )+η (3.8)

for all s0 and λ -almost all ω .
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Accuracy of simulated moments

Corollary
Assume that there exists a unique invariant distribution µ∗ = T

∗µ∗
.

Then for all j ≥ J and N ≥ Nj(ω),

| 1
N

N

∑
n=1

f (sjn(s0,ω))−E (f )|< η (3.10)

for all s0 and λ -almost all ω .

Observe that each approximating function ϕj may contain multiple
invariant distributions µ∗

j .
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Contractive systems

CONDITION C: There exists a constant 0 < γ < 1 such that�
�ϕ(s,ε)−ϕ(s �,ε)�Q(dε)≤ γ �s − s

�� for all pairs s,s �.

Theorem
The true solution of the model has a unique invariant distribution.
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Error bounds

Theorem
Let f be a Lipschitz function with constant L. Let d(ϕ, �ϕ)≤ δ for

some δ > 0. Assume that ϕ satisfies Condition C. Then for every

η > 0 there exists a function �N(ω) such that for all N ≥ �N(ω),

| 1
N

N

∑
n=1

f (�sn(s0,ω))−
�

f (s)µ∗(ds)|≤ Lδ
1− γ

+η (4.3)

for all s0 and λ -almost all ω .


